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Abstract 

Background and Objective: Axillary lymph node (ALN) status is a key indicator in assessing and determining the 

treatment strategy for patients with newly diagnosed breast cancer. Previous studies show that it can be predicted 

by different ways such as imaging and modeling. Machine learning algorithms have shown excellent performance in 

prediction. The purpose of this study is to increase the accuracy of predicting the status of ALN involvement in breast 

cancer patients. To achieve this goal, we investigated the use of five machine learning models and explored two 

modes of integrating them with the stacking approach. In the first mode, the results of the biopsy and imaging 

available in the patients' files were not involved in the modeling. In the second case, these results were applied as 

two input variables along with other demographic and pathological variables in the models. 

Methods: In the initial phase of this study, recorded information was collected from 235 women with breast cancer, 

hospitalized at Omid Hospital in Mashhad between 2002 and 2004. Finally, out of 235 patients, 157 patients were 

included in the study. At first, five different machine learning methods (ANN, SVM, KNN, Random Forest and Logistic 

regression) were used, and then, the result of all combination of models with the stacking approach, was obtained. 

The Rapid Miner software was used for modeling in this study.   

Results: In predicting the final clinical diagnosis of ALN metastasis in the independent test set, the best-performing 
machine learning model was the ANN model, achieving an accuracy of 70.38%. When the results of biopsy and 
imaging were entered into all models as two variables, both KNN and SVM showed higher accuracy (89.17%). 
Eventually, when all combination of models obtained by stacking approach were analyzed, it was found that the best 
combination was related to ANN and SVM models. This combination showed 95.08% sensitivity and 95.08% 
specificity.  
Conclusion: Adding the results of biopsy and imaging methods as two variables to the combination of ANN and SVM 
models with the stacking approach, is a useful method to determine the ALN status in patients with breast cancer.  

 

1. Introduction 

According to the latest official announcement of 

the World Health Organization, breast cancer is the second 

most common cancer in the world in recent years, and it 

also ranks fifth among all types of cancer in terms of the 

number of deaths. In Iran this type of cancer, ranks first in 

terms of incidence and sixth in terms of death rate. 

Unfortunately, in breast cancer patients, the disease can 

spread to other parts of the body through the axillary 

lymph nodes. So, testing the status of lymph node 

involvement in this disease is a necessary task. In addition, 

investigating the involvement of the axillary lymph nodes 

is also a significant factor in determining the most suitable 

treatment [1]. 
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In the past, the status of lymph node involvement 

was determined, only with the surgery [1]. After that, 

imaging methods such as mammography and ultrasound, 

with minor side effects and non-invasive properties, 

became more popular in predicting the status of lymph 

nodes. Magnetic Resonance Imaging (MRI) is a medical 

imaging technique employed in radiology to generate 

images of the anatomy and physiological processes within 

the body. Generally considered safe, MRI may pose risks if 

safety procedures fail or due to human error, leading to 

potential injuries. [2]. Another method is biopsy or 

sentinel lymph node dissection (SLND).  

In this method, as samples are taken only from small 

portions of the tissue, if the biopsy result is negative, it 

does not entirely rule out the possibility of cancer cells in 

the axillary tissue. On the other hand, when the final result 
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indicates involvement of the lymph nodes, it can be 

concluded that cancer has spread to the axillary region. 

[1]. 

Based on past studies, the accuracy of each of the 

mentioned methods is given in Table (1): 

Table (1): Analyzing the results of examining surgical, imaging, and 

biopsy data of patients [1] [2] [3]  
accuracy while 
reporting non-
involvement 

accuracy while 
reporting 

involvement 

Method 

Between 76.9% to 
97.6% 

Between 76.9% to 
97.6% 

Surgery 

Between 52% to 
70% 

Between 55% to 
78% 

Imaging 

Between 62% to 
85% 

100 % Biopsy 

           According to Table (1), it appears that surgery is 

generally more reliable than other methods. However, 

there is a growing trend in utilizing less invasive techniques 

like sentinel lymph node (LN) biopsy or non-invasive 

methods for predicting axillary lymph node (ALN) status. 

This shift is motivated by the complications and morbidity 

associated with conventional axillary surgery, including 

issues such as lymphedema, range-of-motion restriction, 

and arm paresthesia and pain [9]. 

The growing popularity of machine learning in forecasting 

stems from the limitations other methods face, as the 

three mentioned methods struggle to provide reliable and 

accurate results. Approaches such as artificial neural 

networks (ANN) and support vector machines (SVM) have 

shown satisfactory performance in similar studies. 

Machine learning, trained on datasets that include 

historical and real-time data, excels at interpreting new 

data and increases its predictive accuracy. In summary, the 

widespread adoption of machine learning is driven by 

factors such as the availability of significant datasets, 

advanced computational capabilities, continuous 

algorithmic developments, the prevalence of open source 

frameworks, and its tangible impact on optimizing 

business processes and decision-making worldwide. 

Various industries. 

To sum up, in current study, the prediction of lymph node 

involvement status in breast cancer patients is explored. 

In addition to traditional methods like imaging and biopsy, 

five machine learning models are employed for their 

increased accuracy and efficiency. The primary objective 

of this research is to identify the most effective approach 

for predicting lymph node involvement status in women 

with breast cancer. 

2. Literature review and research 

background 

As previously mentioned, the primary focus of this study is 

the diagnosis of involvement or non-involvement of 

axillary lymph nodes in cancer cells in women with breast 

cancer. In the same direction, the PubMed database 

contains 67 articles specifically addressing the prediction 

of lymph node status in patients with breast cancer. Out 

of these articles, only three studies have used machine 

learning approaches that all of them have used machine 

learning for interpreting the imaging of axillary. So, there 

is no study that use demographic and pathological data as 

inputs of machine learning methods. The oldest paper on 

this data base, is entitled "Prediction of prognosis in 

patients with axillary lymph node-positive breast cancer: a 

statistical study" 1984. This work has identified variables 

of importance to short- and long-term prognosis in 97 

node-positive breast cancer patients followed for a 

minimum of 98 months. The diameter of the primary 

tumor, categorized as less than or equal to 3 cm or greater 

than 3 cm, emerges as a crucial prognostic variable. When 

combined with the presence/absence of tumor cells in the 

efferent nodal vessels and the mean nuclear area of the 

tumor cells, it yielded accurate predictions of disease 

outcomes 60 and 98 months’ post-operation, achieving 

success rates of 83% and 80% for the respective time 

frames. While the number of tumor-bearing nodes 

remains a significant variable, the tumor diameter 

provided additional valuable information in predicting 

outcomes [4]. 

Over the following years, studies in this field have 

improved and become more sophisticated to achieve 

better results with higher accuracy. In the same direction, 

some surveys aim to introduce a model to predict the 

status of axillary lymph nodes.  

In 2005 Tanja Fehm et.al. showed that it is possible to 

predict axillary lymph node status, with a model based on 

tumor biological parameters obtained in the primary 

tumor. Incorporating additional parameters offers the 

potential for further enhancing the model, aiming to 

prevent unnecessary axillary lymph node surgery in low-

risk women. The predictive accuracy of the model 

currently stands at 70% [5]. 

In 2012, Stephanie A. Valente et al. conducted a 

retrospective review involving 244 consecutive patients 

diagnosed with invasive breast carcinoma. These patients 

underwent a comprehensive assessment, including 

physical examination of the axilla, digital mammography, 

axillary ultrasonography, and contrast-enhanced breast 
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MRI. Subsequently, histopathologic evaluation was 

performed on one or more axillary lymph nodes. 

Ultimately, their conclusion highlighted that the 

combination of physical examination and multimodal 

imaging proves valuable for preoperative axillary staging 

and treatment planning. However, it was emphasized that 

these methods still fall short as definitive predictors of 

axillary lymph node involvement [6]. 

In 2015, Su Hyun Yoo et al. endeavored to develop a 

pathologic nomogram capable of predicting axillary lymph 

node metastasis (LNM) for each intrinsic subtype of breast 

cancer based on histologic characteristics observed in 

breast core needle biopsy (CNB) for routine clinical 

application. The study included 534 CNBs with invasive 

ductal carcinoma categorized into 5 intrinsic subtypes. 

Eighteen clinic pathological characteristics and 8 

molecular markers employed in CNB were assessed to 

construct the most effective predictive model for LNM [7]. 

In 2015, P. M. Ravdin et al. utilized a training set 

comprising 5963 patients to build predictive models. 

These models employed stepwise logistic regression, both 

with and without first-order interactions. Since all models 

demonstrated similar performance, the study opted for 

the simplest model, namely the LR models without 

interaction terms. The performance of these models in the 

patient test set was evaluated based on the predicted 

number of nodes [8]. 

In 2018, Woo Kyung Moon et al. developed a computer-

aided prediction (CAP) model for predicting axillary lymph 

node (ALN) metastasis in breast cancers using breast 

ultrasound (US) images. The study involved 249 malignant 

tumors obtained from 247 female patients, with ages 

ranging from 20 to 84 years and a mean age of 55 ± 11 

years. The tumors were categorized into non-metastatic 

(130) and metastatic (119) groups based on various 

features. Following semi-automatic tumor segmentation, 

69 quantitative features were extracted, encompassing 

the morphology and texture of tumors within a region of 

interest (ROI) in breast US images. Through backward 

feature selection and linear LR, a prediction model was 

constructed to estimate the likelihood of axillary lymph 

node (ALN) metastasis for each collected sample. The 

study concluded that the proposed Computer-Aided 

Prediction (CAP) model, incorporating both textural and 

morphological features of the primary tumor, proves to be 

a valuable method for determining ALN status in patients 

with breast cancer [9]. 

In 2020, Li-Qiang Zhou et al. employed deep learning for 

predicting Lymph Node Metastasis from primary breast 

cancer US images. The study concluded that deep learning 

models, when applied to US images of patients with 

primary breast cancer, can effectively predict clinically 

negative axillary lymph node metastasis. This suggests that 

AI has the potential to offer an early diagnostic strategy for 

identifying lymph node metastasis in patients with breast 

cancer who initially present with clinically negative lymph 

nodes [10]. 

In one of the latest studies conducted in 2022, Shirin 

Magdar et al. conducted a univariate analysis to identify 

significant variables related to lymph node status. 

According to the findings, tumor grade, ER status, lymph 

vascular invasion (LVI) status, mean KI-67 index, PT-SUV 

max, PT-SUV mean, PT-TLG, and TL ratio emerged as 

significant factors. The study established a relationship 

between these variables and the SLNB (Sentinel Lymph 

Node Biopsy) positive and negative groups [11]. 

In a general overview, studies on predicting lymph node 

involvement in women with breast cancer can be broadly 

categorized into two main groups. These studies primarily 

focus on either creating models to predict the status of 

lymph node involvement by considering various 

prognostic factors or accurately identifying tumors in 

imaging methods such as mammography, breast 

ultrasound, and magnetic resonance imaging (MRI) or 

biopsy. 

To facilitate a comprehensive comparison, a summarized 

overview of the previously mentioned papers, along with 

new additions and the current study, is presented in Table 

(2). Based on Table (2), some points are noticeable. First, 

the number of variables in our study is the highest among 

all studies. It consists of both demographic (like age) and 

pathological (like HER-2) indicators. The highest number in 

studies was 8 before. Second, in our study, we have used 

5 different machine learning models to diagnose the status 

of lymph nodes and also used the stacking method to 

examine the result of combining all these models. The last 

and most important point is the percent of accuracy which 

is the most in our study. In result section we discuss about 

this, comprehensively and completely. In addition to the 

items compared in the table, the following points can be 

mentioned as other strengths of this research: 

 Conducting a distinct analysis of each model using 

both pathological and demographic variables as 

inputs. 

 Incorporating imaging and biopsy results into the 

existing input variables and refitting the models. 

 using the most robust machine learning models  

 Evaluating the combination of results from all 

models through a stacking approach. 



 Employing the Weighted by Relief method for 

feature selection. 

Table (2): Comparison between information and results of similar studies 

 Number 
of 

patients 

Method of prediction Reported 
accuracy 

Number 
of 

variables 

Modeling 
with clinic 

pathological 
variables  

Modeling 
with 

imaging 
or biopsy 

[5] 200 multivariate logistic regression   70% 8 *  

[6] 244 PE/ MMG/ US/ MRI (imaging methods) US= 82.8 -  * 

[7] 534 core needle biopsy 79% 8 *  

[8] 11964 Logistic regression models - 7 *  

[9] 247 a computer-aided prediction model for interpreting 
ultrasound 

75.1% -  * 

[10] 1055 ANN for interpreting US images 82% -  * 

[11] 66 Probabilistic neural network 71% 5 *  

[12] 198 deep learning-based model  88% 3  * 

[13] 266 Random Forest/ XGBoost/ANN ANN=72% 4  * 

[14] 3701 multi-modal and multi-instance deep learning 
model 

75% -  * 

[15] 988 Convolutional neural network for interpreting MRI 89.2% - *  

this 
study 

235 ANN/SVM/KNN/Logistic/Random Forest (and 
their combination by stacking approach) 

93.01% 15 * * 

 

Based on our search, no paper in PubMed has 

integrated or compared the results of imaging or 

biopsy with prediction models incorporating 

prognostic factors. In this study, to explore novel 

approaches using patient data, biopsy and imaging 

results were collected along with other available 

patient information. Subsequently, five different 

machine learning models were applied to predict the 

status of lymph node involvement. Finally, employing 

a stacking approach, various combinations of the five 

models were examined in two distinct situations: first, 

without the results of biopsy and imaging, and second, 

by including them. 

 

3. Methods and models 

3.1. Patients and data sets 

 In the initial phase of this study, recorded data was 

collected from 235 women with breast cancer, who were 

hospitalized in Omid Hospital in Mashhad between 2012 

and 2014. Finally, out of 235 patients, 157 patients with 

breast cancer were included in the study. because The 

other patients had not performed lymph node removal 

surgery, and the status of their lymph node involvement 

was not known. Sixty-four patients had involvement of 

lymph nodes due to metastasis; in the other 93 patients, 

no signs of involvement were observed after lymph node 

removal surgery. Demographic and clinical information, as 

well as some information about treatment methods and 

other variables, were extracted from the patient's files. 

The range of age was, 25_89 years (average: 50 years) and 

the range of the size of the tumor was 0.2_14 cm (average: 

3.84 cm). Other demographic data is shown in Table (3) 

and a flowchart describing the research process is shown 

in Figure (1).  

Table (3): some Demographic data for 157 patients 

characteristic Data set 

No. Of patients 157 

involvement 64 

Non-involvement 93 

Age 

<40 y 47 

40_49 y 55 

50_59 y 27 

60_69 y 22 

≥70 6 

Involved breast 

Right 64 

Left 93 

Tumor size 

≤0.2 Cm 62 

2.1_4.0 Cm 74 

>4 Cm 21 



Gathering Data from patients 
files

Data preprocessing

Assessing the randomness of missing data 
through Little test

Estimating missing values using maximum-
expectation (ME) method 

Feature selection by  Weighted by Relief  
method

Dividing data set

Test set
Train set

Modeling

Running each model separately in two 
ways

Without the result 
of biopsy and MRI

With the result of 
biopsy and MRI

Using stacking approach

Performance evaluation

Optimizing model parameters through 
Cross-Validation (CV)

 

Figure 1: Flowchart of procedures in the data processing and development and evaluation of machine learning models 

3.2. Data preprocessing 

In data management, the most effective approach is 

to ensure comprehensive data collection, minimizing 

or avoiding missing data. However, the presence of 

missing data in the data set is almost inevitable. In this 

research, the data related to some variables had 

missing values [16]. Before selecting the suitable 

method for handling missing data, it was essential to 

examine the data for complete randomness. In the 

context of multivariate quantitative data analysis, 

Little’s test was employed to assess this criterion [17]. 

The results of the test showed that the missing data 

were entirely random. So, for estimating the missing 

values, the Expectation-Maximization method was 

used [18]. In the next step, it was time to choose the 

suitable variables to enter the model [19]. For this 

purpose, the Weighted by relief method was used on 

the training set. Based on this method, among the 15 

collected variables, only the following 8 variables 

applied to the final phase of the research: 1. The 

involved breast (left, right), 2. the initial condition in 

the first visit (Primary patient or Recurrence), 3. the 

degree of tumor malignancy (1,2,3), 4. the status of 

the estrogen and, 5. progesterone hormone 

receptors, 6. human growth factor 2 (positive or 

negative), 7. the period between observing the 

symptoms by the patient to start the treatment 

process, 8.  the Triple negative of breast cancer 

(positive or negative). So, it can be concluded that all 

the demographic variables have been excluded and 

only pathological variables have been detected 

effective on the status of lymph nodes.  

3.3. Models 

In this section, all the models used in this study are 

introduced. 

3.3.1. Artificial neural network (ANN) model 

Artificial neural networks (ANN) are a fundamental 

component of machine learning, inspired by the structure 

and function of the human brain. These networks consist 

of interconnected nodes or "neurons" that process 

information in layers, each layer helping to extract 

complex patterns and features from the input data. 

Artificial neural networks consist of an input layer, hidden 

layers, and an output layer, and the connections between 

neurons are assigned weights that are adjusted during the 

learning process. Learning occurs through a training phase 

where the network modifies its weights based on the data 



provided, allowing it to make accurate predictions or 

classifications. 

The strength of artificial neural networks lies in their ability 

to model complex relationships in data, which makes them 

particularly effective in tasks such as image recognition, 

natural language processing, and predictive analytics. The 

hierarchical structure and adaptability of neural networks 

enable them to recognize subtle patterns and increase 

their performance in handling diverse and complex data 

sets. As a versatile tool in the machine learning landscape, 

ANNs continue to advance in various fields and provide 

solutions to complex problems through their capacity to 

learn and generalize from diverse datasets [20]. 

3.3.2.  Support vector machine (SVM) model 

 SVMs are powerful machine learning algorithms designed 
for classification and regression tasks. The essence of SVM 
lies in its ability to find an optimal hyperplane that 
separates the data into distinct classes in the feature 
space. "Support vectors" are data points that are closest 
to the decision boundary and help determine the optimal 
hyperplane. SVMs are particularly effective in high-
dimensional spaces, making them suitable for tasks such 
as image classification and text classification. In addition, 
SVMs can handle linear and non-linear relationships 
between features through the use of different kernel 
functions, providing flexibility in capturing complex 
patterns in data. One of the notable strengths of SVMs is 
their ability to generalize well, even in scenarios with 
limited training data. The goal of SVMs is to increase 
robustness against changes and noise in the dataset by 
maximizing the margin between classes. This makes SVMs 
valuable in real-world applications where data sets are 
sparse or exhibit overlapping patterns. The versatility, 
efficiency, and generalization capabilities of support 
vector machines contribute to their widespread adoption 
in various fields, including finance, healthcare, and 
bioinformatics [21]. 

3.3.3. Nearest neighbor (KNN) model  

KNN is a simple yet effective machine learning algorithm 

used for classification and regression tasks. The main idea 

behind KNN is to predict the class or value of a data point 

based on the majority class or average of its nearest 

neighbors in the feature space. The "K" in KNN represents 

the number of neighbors considered in the prediction, and 

the algorithm calculates distances, often using the 

Euclidean distance, to identify the closest data points. KNN 

operates on the assumption that similar instances in the 

feature space tend to share similar results, making it 

particularly suitable for scenarios where local patterns are 

essential. A notable feature of KNN is its lazy learning 

approach - the model does not explicitly learn from the 

training data during the training phase. Instead, it 

remembers the data set and performs the calculations at 

forecast time. This adapts the KNN to changes in the 

dataset and is particularly useful in situations where 

underlying patterns may evolve over time. While KNN is 

intuitive and easy to implement, its performance can be 

affected by data dimensionality and dataset size. 

Nevertheless, KNN remains a valuable tool, especially in 

applications such as recommender systems, image 

recognition, and anomaly detection [22]. 

3.3.4. Random forest (RF) model 

RF is a powerful ensemble learning algorithm that is widely 

used for classification and regression tasks. The system 

works by building a large number of decision trees during 

the training phase and combining their outputs for robust 

predictions. Each tree in the random forest is trained on a 

random subset of features and a bootstrap sample of the 

training data that introduces variation among individual 

trees. This diversity contributes to the resilience of the 

model against overfitting, as the collective decision of 

multiple trees leads to more accurate and stable 

predictions than a single tree. One of the strengths of 

Random Forest lies in its ability to handle high-dimensional 

data, large datasets, and a combination of categorical and 

numerical features. This algorithm is less sensitive to 

outliers and noise and provides feature importance 

ranking and helps to identify the most influential variables. 

Random Forest's versatility and robustness make it a 

popular choice in a variety of fields, including finance, 

healthcare, and remote sensing, where accurate 

predictions and interpretability are essential [23]. 

3.3.5. Logistic regression (LR) model 

 LR is a widely used statistical method for binary 

classification problems where the outcome variable has 

two possible classes. Despite its name, logistic regression 

is used for classification rather than regression. The 

algorithm models the probability of a sample belonging to 

a particular class using a logistic function, which ensures 

that the predicted probabilities lie between 0 and 1. The 

model calculates the coefficients for each input feature, 

and the weighted sum of these features is converted into 

probabilities with intercepts through the logistic function. 

A decision boundary is then applied to classify the samples 

into one of two classes based on their predicted 

probabilities. One of the notable features of logistic 

regression is its simplicity and interpretability. The 

coefficients obtained from the model provide insights into 

the effect of each feature on the probability of belonging 

to a particular class. Logistic regression is particularly 

useful when the relationship between the characteristics 

and the binary outcome is linear. While logistic regression 



is basic, it is versatile, and modifications such as 

multinomial logistic regression extend its applicability to 

scenarios with more than two classes. This algorithm finds 

application in fields such as healthcare to predict disease 

outcomes, marketing to predict customer churn, and 

various other fields that require binary classification tasks 

[24]. 

3.4. Stacking approach 

Stacking, or Stacked Generalization, represents an 
ensemble machine learning algorithm that uses a meta-
learning approach to determine the optimal way of 
combining predictions from two or more base machine-
learning algorithms. The advantage of stacking lies in its 
ability to harness the strengths of multiple well-
performing models in a classification or regression task, 
ultimately yielding predictions with superior performance 
compared to any single model within the ensemble. The 
architecture of a stacking model typically consists of two 
or more base models, commonly referred to as level-0 
models. These base models generate predictions that are 
then aggregated by a meta-model, often termed the level-
1 model. The meta-model combines the predictions from 
the base models, providing a comprehensive and refined 
outcome that enhances predictive accuracy and 
generalization across various scenarios. 

 Level-0 Models (Base-Models): These are models 
that are trained on the training data, and their 
individual predictions are collected. These base 
models serve as the foundation for the ensemble 
approach. 

 Level-1 Model (Meta-Model): The meta-model, or 
level-1 model, is responsible for learning the 
optimal way to combine the predictions 
generated by the base models. It takes the 
outputs of the base models as input and produces 
a refined and consolidated prediction, enhancing 
the overall performance of the ensemble. 

The meta-model is trained using the predictions generated 
by the base models. Specifically, data that was not used 
during the training of the base models is provided to these 
base models for making predictions. The predictions, 
along with the corresponding expected outputs, form the 
input and output pairs of the training dataset used to fit 
the meta-model. This process allows the meta-model to 
learn how to effectively combine the predictions from the 
base models, optimizing the ensemble's overall predictive 
performance. The typical method for preparing the 
training dataset for the meta-model involves k-fold cross-
validation of the base models. In this approach, the out-of-
fold predictions serve as the foundation for constructing 
the training dataset for the meta-model. Following the 

preparation of the meta-model's training dataset, the 
meta-model is trained independently on this data, while 
the base models are trained on the entire original training 
dataset. This ensures that the meta-model learns from the 
diverse predictions generated by the base models, 
optimizing its ability to effectively combine their outputs 
and enhance the ensemble's overall predictive 
performance. 
The meta-model is frequently designed to be simple, 
offering a straightforward interpretation of the 
predictions generated by the base models. Linear models 
are commonly chosen for this role, with linear regression 
employed for regression tasks (predicting a numeric value) 
and LR utilized for classification tasks (predicting a class 
label). However, while this approach is common, it is not 
mandatory, and other types of models can be used as the 
meta-model depending on the specific requirements and 
characteristics of the problem at hand.  

 Regression Meta-Model: Linear Regression. 
 Classification Meta-Model: LR (used in this study) 

The extent of performance improvement achieved 
through stacking depends on the complexity of the 
problem at hand and the adequacy of its representation in 
the training data. It is particularly effective when the 
problem is intricate enough that there is substantial 
knowledge to be gained by combining predictions from 
multiple models. Additionally, the choice of base models is 
crucial, and their effectiveness relies on both their 
individual skill and the degree of correlation in their 
predictions (or errors). 

If a base model demonstrates comparable or superior 
performance to the stacking ensemble, it is advisable to 
favor the base model. This preference is attributed to the 
lower complexity of the base model, making it simpler to 
describe, train, and maintain. The decision to use stacking 
or a base model hinges on a nuanced evaluation of 
problem complexity, data representation, and the 
performance and correlation of the individual models 
involved. 

3.5. Evaluation criteria 

The three markers given in Table (4) have been used as the 
evaluation criteria of the models. It is necessary to explain 
that the factors of sensitivity, specificity, and accuracy 
were calculated from the following methods. The TP index 
denotes the number of accurately predicted positive cases 
(indicating involvement), while FP represents the count of 
incorrectly predicted positive cases (erroneous lymph 
node involvement predictions). Similarly, TN and FN 
signify the accurate and inaccurate predictions of negative 
cases (non-involvement), respectively. In medical 
terminology, sensitivity refers to the percentage of 



individuals who test positive for a disease among those 
who actually have the disease. A highly sensitive test is 
effective in ruling out individuals who do not have the 
disease. On the other hand, specificity is the percentage of 
individuals without the disease who test negative for it. A 
highly specific test aids in correctly identifying individuals 
who truly have the disease [5] [6].  

Table (4): the diagnostic performance indices 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

sensitivity 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

specificity 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝒂𝒍𝒍 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
 

Accuracy 

4.  Results 

Each machine learning model has several hyper 
parameters that can be adjusted to optimize its 
performance. Its behavior is controlled by hyper 
parameters, which have a big effect on how well the model 
performs. Therefore, prior to presenting the primary 
results of this research, the adjusted hyper parameters for 
each model are presented. 

4.1. Adjust the hyper parameters of the models 
 
In this study, the trial and error process in conjunction with 
K-fold CV has been used to adjust the hyper parameters of 
the models in Rapid Miner software, and their values are 
given in Table (5). In this process, multiple trials with 
different parameter values are performed, and for each 
set of parameters, the model's performance are evaluated 
using CV. This allows iteratively refine the parameter 
values based on the model's performance on validation 
data, ultimately leading to the selection of optimal 
parameters that generalize well. Moreover, using CV, 
helps prevent overfitting by providing a more realistic 
estimate of the model's performance on unseen data. It 
adds a systematic evaluation component to the trial and 
error process, ensuring that the selected parameters lead 
to a model that performs well on a broader range of data. 

Table (5): Optimal parameters of the models 
ANN 

optimal 
amount 

Parameter 

40 Training cycle 

0.2 Learning rate 

0.9 Momentum 

No Decay 

Yes Shuffle 

No normalized 
 

SVM 

optimal 
amount 

Parameter 

multi 
quadratic 

Kernel Type 

5 Kernel Cache 

14.3 C 

No Scale 
 

Random forest Logistic regression 

optimal 
amount 

Parameter 

21 Number of 
Trees 

No Apply Pruning 

No Apply pre 
pruning 

35 Max depth 

Gain Ratio Criteria 
 

optimal 
amount 

Parameter 

Dot Kernel Type 

5 Kernel 
Cache 

50 C 

No Scale 
 

KNN 

K 1 
 

4.2. Models Performance 

 After determining the optimal values for the model's 

hyper parameters, initially, the eight selected variables 

were individually applied to the models. Subsequently, the 

output of each model was assessed based on the criteria 

outlined in Table (4). The results of these evaluations are 

presented in Table (6)-A. Following this, patients' MRI and 

biopsy results were incorporated as additional variables 

alongside the previous inputs, and all models were re-

executed. The outcomes are provided in Table (6)-B. It is 

evident that this step has led to improvements in all 

indicators across all models. 

At this stage, an evaluation of the accuracy of the imaging 

and biopsy methods has been conducted based on the 

information recorded in patients' files regarding the 

results of mammography of the axillary lymph nodes at 

the beginning of the treatment and the outcomes of 

surgical lymph node removal. The results are presented in 

Table (7).  

Table (6): models Performance  
without mammography and biopsy results 

Indicator
 Approach 

LR RF KNN SVM ANN 

Sensitivity 71.11 64.71 68.75 56.32 70.31 

Specificity 61.45 66.67 68.75 63.41 70.31 

Accuracy 64.81 65.51 68.85 58.4 70.38 

considering mammography and biopsy results 

Sensitivity 79.66 83.56 85.71 87.88 83.56 

Specificity 75.36 94.55 93.10 90.32 94.55 

Accuracy 77.5 88.14 89.17 89.17 88.40 

Table (7): biopsy and imaging results 

Method Sensitivity Specificity Accuracy 

Imaging 65% 63% 64% 

Biopsy 100% 68% 84% 

Based on the results shown in Table (6), In the first case, 

the highest accuracy belongs to the ANN model. But when 

the model reports the involvement, the LR model is more 

accurate. the SVM model is the least accurate one, which 



is only slightly more than 50%. Then after adding biopsy 

and MRI results to the models, evaluation indicators 

improved significantly in all models, while the difference 

between the two indicators Sensitivity and Specificity 
decreases. The SVM accuracy has improved the most and 

it reached from 58.4% to 89.17%, which is also the 

accuracy rate for KNN model. However, if the outcome of 

the model is involvement, the SVM model with a 

probability of 87.88% is more reliable. But if the model 

report is non -involvement, the result of the ANN and RF 

models are 94.55% which are the best performing. 

Compared to the information presented in Table (7), the 

SVM model is the only one exhibiting lower accuracy when 

contrasted with biopsy and imaging methods. Therefore, 

separately running all models with pathology variables has 

better results than running only biopsy or only imaging. 

In the case of lymph nodes in breast cancer, as previously 

stated, if it is not involvement and is diagnosed with error, 

a vain surgery with complications such as lymphoma and 

limitation of hand movement is imposed on the patient. 

On the other hand, if the cancer has reached the lymph 

nodes, but this is not correctly diagnosed, the cancer may 

affect the patient's body with wider metastases and 

threaten her life. Therefore, the correct diagnosis of 

involvement is more important. Accordingly, the SVM 

model is recommended. 

4.3. Ensemble Method – Stacking 

In Table (8), the results of implementing the stacking 

approach and the different combinations of 5 machine 

learning models are presented, incorporating the results 

of biopsy and mammography as additional variables in the 

models. For example, in composition number 17, In the 

context of combining Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN) using stacking, the 

process typically unfolds as follows: 

1. Base models (SVM and ANN): Initially, separate 

SVM and ANN models are trained on the dataset 

to make predictions independently. Each model 

captures different aspects of the underlying 

patterns in the data.  

2. Meta-model formation: The predictions of SVM 

and ANN models serve as input features for a 

meta-model. These predictions become new input 

features for the meta-model, which is often a 

simpler model such as LR (in this study) or another 

algorithm capable of combining diverse 

predictions.  

3. Meta-model training: The meta-model is trained 

on the dataset using SVM and ANN predictions as 

input features. During this training, the meta-

model learns how to weight and combine the 

predictions of the base models to optimize the 

overall performance.  

4. Final Prediction: After the meta-model is trained, 

it can be used to make final predictions on new, 

unseen data.  

 
Table (8): Stacking implementation results for different 

modes of combining models (Test set) 

Accuracy Logistic R.F KNN SVM ANN NO 

90.70 * * * * * 1 

88.40  * * * * 2 

88.40 *  * * * 3 

89.39 * *  * * 4 

88.40 * * *  * 5 

88.33 * * * *  6 

87.63   * * * 7 

89.74  *  * * 8 

90.71 *   * * 9 

88.27  * *  * 10 

88.40 *  *  * 11 

91.35 * *   * 12 

88.27  * * *  13 

89.87 *  * *  14 

88.46 * *  *  15 

88.40 * * *   16 

93.01    * * 17 

87.63   *  * 18 

90.62  *   * 19 

90.71 *    * 20 

89.06   * *  21 

89.10  *  *  22 

88.46 *   *  23 

88.33  * *   24 

89.87 *  *   25 

88.40 * *    26 

Based on Table (8), the highest accuracy (93.01 %) is 

related to the combination of the two models ANN and 

SVM. Therefore, the results of implementing this 

combination are in Table (9).  

Table (9): Stacking implementation results for the 

combination of ANN and SVM 

Indicator Stacking (ANN+SVM) 

Sensitivity 91.04 

Specificity 95.08 

Accuracy 93.01 

Based on these results, if the disease involves lymph 

nodes, the model with 91.04% probability predicts this, 

correctly .On the other hand, if there is no lymph node 

involvement, the probability of correct prediction 

increases to 95.31%.  



Therefore, it can be concluded that with modeling using 

machine learning algorithms, the prediction of lymph node 

involvement in breast cancer patients can be  

 

Figure (2): Comparison of prediction accuracy in different phases of the study

improved to an acceptable level. When, in addition to the 

demographic and pathological variables, the results of 

imaging and biopsy of the patient's breast in the initial visit 

are applied to the models as input variables, the integration 

of machine learning models with the accumulation 

approach, increases the accuracy of prediction. So, for 

example, in the case of non-involvement reporting, the 

probability of error is only 4.69%. Usually, for more efficient 

treatment, the physician determines the time intervals for 

check-ups, according to the conditions of each patient. In 

Figure (2), In each stage of the study, the prediction 

accuracy in reporting involvement and non-involvement is 

given in this study. 

based on these results, it is suggested that if the biopsy 

results show axillary lymph node involvement, trust it 

completely. Otherwise, if the biopsy results show non-

involvement, using a stacking approach for a combination 

of two models of ANN and SVM to predict it with the 

highest accuracy (95.31%) is recommended. It means if the 

model says that there is no involvement, it is right with a 

95.08% probability. However, because there is still a 4.92 

percent chance of error, regular check-up periods are 

necessary for the patient. 

5. Discussion  

In this study, the whole mode of a combination of 5 

machine learning models using the stacking approach, was 

investigated in terms of the accuracy of predicting the 

status of lymph node involvement in two different modes. 

First, the demographic and pathology variables available in 

patients' data files were the only input variables, and 

second, the results of biopsy and imaging were also added 

into the models as two additional variables. Based on the 

results, the combination of ANN and SVM was the best-

performing model that yielded satisfactory predictions on 

the test set.  

The prediction accuracy of This combination was: 93.01%. 

It means that, in general, this combination correctly 

predicts the status of lymph node involvement in a patient 

with breast cancer with a probability of 93.01%. So, this 

work represents an improved approach to the evaluation of 

early lymph node status in patients with early breast cancer 

that significantly improves current prognostic methods that 

rely on physical examination or lymph node imaging. 

To the best of our knowledge, this is the first study that 

applies the stacking approach to deep learning for lymph 

node metastasis prediction analysis. It should be 

emphasized again, the timely and accurate detection of 

lymph node micro-metastasis is essential for guiding 

surgical decision-making, reconstruction options, and 

adjuvant therapy. 

 

As previously mentioned, there are several non-invasive 

methods for assessing the involvement of axillary lymph 

nodes in cancer cells. These methods encompass various 

imaging techniques such as CT (computerized tomography), 

which produces cross-sectional images by combining X-ray 

images from different angles. Additionally, MRI (magnetic 
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resonance imaging), PE (Pulmonary Embolus Study), MG 

(Myasthenia gravis) tests, ultrasound scans (US), PET/CT 

scans, PET/MRI scans, and SPECT/CT scans provide detailed 

insights through different modalities. 

Biopsy and physical examination are also employed; 

however, the latter exhibits a notable margin of error. This 

is primarily due to the limitations in detecting non-swollen 

lymph nodes during the early stages of metastasis, 

rendering them undetectable in examinations. 

Consequently, this method is not further explored and is 

excluded from comparative analyses. 

In recent times, deep learning has witnessed significant 

advancements, enabling machines to autonomously 

interpret and elucidate intricate data sets, offering a 

promising avenue for further exploration in this domain. 

In 2019, Maria Adele Marino and et al. in a review paper 

completely compared the sensitivity and specificity of all 

the different imaging methods to detect the involvement of 

axillary lymph nodes in a patient with breast cancer. 

According to this article, the ultrasound (US) method 

exhibits the highest sensitivity, emphasizing its 

effectiveness in detecting axillary lymph node involvement. 

On the other hand, the PET/MRI method boasts a specificity 

of 100%, implying a high level of accuracy in confirming 

non-involvement. It's important to note that while PET/MRI 

offers exceptional accuracy, its limited availability in 

medical centers due to market constraints and high costs 

might hinder widespread use. 

Moving forward, both the PET/CT and PE methods 

demonstrate a commendable 93% accuracy in correctly 

predicting non-involvement of lymph nodes. However, 

caution is advised in relying solely on these methods, as 

their accuracy diminishes in the presence of metastasis. 

Therefore, the absolute use of PET/CT and PE methods for 

predictions in the context of metastasis is not 

recommended. Consideration of these factors is crucial in 

determining the most suitable approach for lymph node 

assessment based on both sensitivity and specificity [27].  

 

In a 2020 survey conducted by Lan Luo and colleagues, 

patients with early cervical cancer at different stages were 

assessed using MRI alone, CT alone, and a combination of 

MRI and CT. The findings indicate that the combined use of 

these two imaging methods enhances accuracy, sensitivity, 

and specificity. Specifically, the sensitivity for MRI, CT, and 

the combined approach was 75.00%, 62.50%, and 78.13%, 

respectively. In terms of specificity, the combined mode 

exhibited the highest value at 87.50%, while CT and MRI 

showed values of 56.25% and 72.92%, respectively. The 

accuracy of the CT method was 58.75%, and for MRI, it was 

77.50%. However, the combination of both models 

significantly increased accuracy to 83.75%. These results 

underscore the synergistic benefits of utilizing both MRI 

and CT in tandem, leading to improved diagnostic 

outcomes for patients with early cervical cancer. 

In a 2020 survey led by Lan Luo and colleagues, patients at 

different stages of early cervical cancer underwent 

examination using MRI, CT alone, and a combination of MRI 

with CT. The findings highlight that the synergistic use of 

both imaging methods, MRI and CT, leads to improved 

accuracy, sensitivity, and specificity. Specifically, the 

sensitivity for MRI, CT, and the combined approach was 

75.00%, 62.50%, and 78.13%, respectively. In terms of 

specificity, the combined mode demonstrated the highest 

value at 87.50%, whereas CT and MRI exhibited values of 

56.25% and 72.92%, respectively. While the accuracy of the 

CT method was 58.75%, and for MRI, it was 77.50%, the 

combination of both models significantly elevated accuracy 

to 83.75%. These results emphasize the enhanced 

diagnostic capabilities achieved by integrating both MRI 

and CT in the evaluation of patients with early cervical 

cancer across various stages [28].  

In 2021, Janna Morawitz and a team of researchers 

demonstrated that PET/MRI surpasses both CT and MRI in 

detecting nodal involvement, as revealed through patient-

based and lesion-based analyses. Notably, PET/MRI 

exhibited superior performance in detecting lymph node 

metastases across all lymph node stations. Among the 

tested imaging modalities, PET/MRI showcased the highest 

sensitivity, while CT exhibited the lowest sensitivity but 

excelled in specificity. The three key indicators, Sensitivity, 

Specificity, and Accuracy, were reported as follows: 

Sensitivity: 82.43%, Specificity: 86.36%, Accuracy: 84.78%. 

These findings underscore the efficacy of PET/MRI in 

providing enhanced sensitivity and accuracy in the 

detection of nodal involvement and lymph node 

metastases compared to traditional CT and MRI imaging 

methods [29].  

In 2023, Joachim Diessner and a team of researchers 

highlighted the correlation between increasing sensitivity 

and tumor size for various imaging modalities including 

sonography, mammography, and CT. Notably, MRI 

demonstrated consistent sensitivity values independent of 

tumor size, ranging from 41.46% to 52.94%. In contrast, 

sonography exhibited sensitivity percentages of 18.88% for 

pT1, 38.86% for pT2, 51.11% for pT3, and 55.88% for pT4. 

Except for tumor stage pT4, significant differences were 

observed between conventional imaging methods 

(sonography and/or mammography) and cross-sectional 



imaging (MRI and/or CT).  For tumor stage pT1, cross-

sectional imaging displayed higher sensitivity in detecting 

positive lymph nodes. The results indicated that the 

mammography method had the lowest sensitivity at 5.84% 

for tumor size 1, while MRI or CT achieved the maximum 

sensitivity of 62.96% for tumor size 4. These findings 

underscore the varying sensitivity of different imaging 

methods based on tumor size and highlight the advantages 

of cross-sectional imaging, particularly MRI and CT, in 

certain scenarios [30].  

According to the information obtained from other studies 

conducted in the field of investigating the status of lymph 

node involvement in breast cancer patients, it can be seen 

that PET/MRI imaging has the highest accuracy among all 

diagnostic methods except modeling. However, although 

this imaging method has improved predictive accuracy and 

is safer for patients in terms of radiation exposure, it has 

some noticeable disadvantages that have made it not 

widely used yet:  

 It requires a high initial capital cost 
 PET/MRI scanners are not as widely available as 

standalone PET or MRI scanners 
 PET/MRI scanners may have larger space 

requirements compared to standalone scanners 
 There is a lack of protocol and standardization due 

to huge variations in MRI protocols 
 No combined reporting of PET and MRI 

components 
 Limited flexibility of combined PET/MRI systems 
 High acquisition times of up to 60 min 
 Radiating Gamma from radio harm injected into 

the patient’s body 

On the other hand, forecasting modeling methods offer 

advantages that can compensate for the shortcomings of 

other methods and, more importantly, provide higher 

accuracy in predictions. Some of the advantages of the 

modeling method include: 

 

 No need for financial and infrastructure 

investment for the investigation 

 Higher prediction accuracy which is usually due to 

the ability of these models (machine learning 

models) to discover complex connections and 

relationships between input and output data.  

 Considering all cases, even those that remain far 

from the researcher's eyes, and examining their 

effects 

 Not having any complications such as radiation 

effects and surgical complications for the patient 

 The possibility of using a variety of prediction 

models and comparing the results High processing 

speed 

 Possibility of combining the models by ensemble 

methods 

 Possibility of predicting a situation that has not 

been experienced in the real world, yet 

 Integrating data from various sources, including 

clinical records, genetic information, and lifestyle 

factors, providing a holistic view for better 

predictions 

 Machine learning models can continuously learn 

and adapt based on new data, allowing for 

ongoing improvements in prediction accuracy over 

time 

 The possibility to be accessed remotely, making 

them more accessible to a broader population, 

especially in regions with limited healthcare 

infrastructure 

 handling missing data more effectively, allowing 

for the inclusion of incomplete patient 

information in the analysis. 

 Predictive models can be easily adapted to 

advancements in technology, such as 

incorporating new types of diagnostic tests or 

emerging biomarkers 

Our study has several limitations that need to be 

considered. First, this was a retrospective study, and the 

results were dependent on the composition of these 

limited-size data. Further improvement with larger and 

prospective studies must be achieved before actual clinical 

use. Secondly, lymph node metastasis and no metastasis 

were inherently unstable diagnoses in that their accuracy is 

dependent on the time of breast surgery. For example, 

some of the patients with negative lymph nodes, if followed 

up for a long enough time, may have eventually progressed 

to have positive lymph nodes. Finally, because our study 

was a single-center study, accessing data from several 

scattered centers or even cities is recommended in further 

studies to extrapolate the results more confidently to all 

individuals. 

On the other hand, there are also some benefits: First, 

although, most studies have focused on improving imaging 

methods in predicting the involvement or non-involvement 

of lymph nodes and in recent studies, modeling has 

explicitly been done, and then the results have been 

compared with those obtained from biopsy and imaging, in 

this study the results of biopsy and MRI were applied 

directly to the models as two input variables along with 

other demographic and pathological variables in the 

models. This is a new process that has led to higher 



accuracy. The fact that Magnetic resonance imaging (MRI) 

is a medical imaging technique used in radiology to form 

pictures of the anatomy and the physiological processes of 

the body, and the biopsy uses the information of the living 

native cells and their physiology to check the condition of 

the cell, can justify the accuracy improvement. Second, 

combining all modes of five machine learning models and 

comparing their results is also a new scenario for predicting 

the status of lymph nodes.    

To summarize, the combined stacking approach of two 

machine learning models, ANN and SVM, incorporating the 

results of biopsy and MRI of the patient in the early stages 

of the disease as two additional variables alongside other 

pathological and demographic variables, yields an 

acceptable prediction regarding the patient's lymph node 

involvement status. However, if the biopsy result indicates 

lymph node involvement, it is accurate. Subsequently, 

medical professionals can determine the appropriate 

treatment method to prevent the spread of metastasis 

based on the patient's condition. In such cases, there may 

be no need to input patient data and make predictions 

using the final model. 
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